在雷达目标识别中,利用核主分量分析(KPCA)方法来进行目标特征提取,忽略了高分辨率距离像(HRRP)的本身特性。提取一种平移不变特征-中心矩作为特征向量,采用KPCA进行特征降维;由于BP神经网络易陷入局部极小,采用遗传算法(GA)对BP网络节点权值和阀值进行优化选择。基于雷达实测数据的实验结果表明:平移不变的KPCA特征提取方法实现了平移不变和降维的结合,同时,利用GA优化BP神经网络提高了分类器稳定性改善易陷入局部最小的缺陷,提高了雷达目标识别的性能。