摘要
针对高超声速强机动目标的运动具有复杂性、突变性和强非线性等特点,单模型跟踪算法难以实现精确跟踪的问题,提出了一种基于多重渐消因子的强跟踪UKF自适应交互多模型算法。考虑现有强跟踪UKF算法引入单渐消因子的不足,根据正交性原理推导得到了引入多渐消因子的强跟踪UKF算法,完成了对非线性目标状态的滤波估计;在交互多模型算法的子模型中选用改进的CS-Jerk模型;对交互多模型中各子模型间的转移概率进行在线自适应调整,并与改进CS-Jerk模型结合克服了单模型算法跟踪强机动目标的不足,实现了模型与目标运动模式的实时最优匹配。仿真结果表明,与单模型算法和经典多模型算法相比,提出的算法使得不同条件下位置和速度的跟踪误差至少降低11.89%,有效提高了高超声速强机动目标跟踪精度。