摘要

针对变压器故障样本类别不平衡造成分类模型准确率偏低的问题,提出一种基于样本集成学习和蛇优化算法(SO)优化支持向量机(SVM)的变压器故障诊断模型。该模型先利用EasyEnsemble采样器对样本进行多次欠采样后生成类别平衡的多个子集;然后以Bagging策略训练SO优化关键参数后的SVM模型,综合各个分类器结果得到最终故障类型。通过算例对所提模型有效性进行验证,数据表明,SO-SVM的故障诊断相比于RF、SVM、KNN等模型,诊断准确率分别提高了3.44%、6.89%、10.92%,AUC值分别提高了0.026 4、0.042 5、0.081 2;在同一分类器下,SO-SVM模型相比于SMOTE和ADASYN样本平衡方法,诊断准确率分别提高了4.59%、2.87%,说明SO-SVM模型对不平衡样本的故障诊断能力更优。