摘要
在数据流上挖掘频繁闭项集是数据挖掘中关联性挖掘的重要研究课题之一.该文提出了一种高效的数据流频繁闭项挖掘算法——CFMoment,通过使用滑动窗口不断维护数据流中的频繁闭项集,可适用于实时性要求较高的多种数据流处理应用环境.该算法利用项目的有效比特序列表示来减少滑动窗口所需的时间和内存,进一步提升了在数据流中挖掘频繁闭项集的效率并有效降低了运行过程中的内存需求.实验表明,该算法不仅获得了高精度的挖掘结果,而且其运算速度明显快于现有的Moment算法,在数据流上挖掘频繁闭项集的内存消耗更少.
- 单位