建立一种用于识别棉花中异纤的深度学习模型。该模型将传统卷积与深度可分离卷积相结合,使得模型较为精简,易于训练;同时引入了卷积层注意力机制,加强了模型对于复杂背景下异纤的识别能力。试验结果表明:该模型在测试集上的识别准确率为91.93%,相比于传统图像分类网络平均提高了4.47个百分点,同时检测单幅图像仅需0.015 s。认为:本研究提出的模型可以较好地满足实际场景的检测需要。