摘要
在频分双工(FDD)大规模多输入多输出(MIMO)系统中,为了确保通信质量,用户设备(UE)需要将信道状态信息(CSI)反馈给基站(BS)。随着天线数量的增加,CSI反馈开销急剧增加,使得BS获得准确CSI变得困难。为了降低反馈开销,提高反馈质量,采用深度学习(DL)方法,提出一种基于全卷积网络的信道反馈网络MCMTNet,该网络由三部分构成。卷积神经网络(CNN)将CSI压缩。转置CNN和精细密集连接网络分别进行初始恢复和最终恢复。仿真结果表明:提出的MCMTNet的性能优于传统压缩感知方法和现有基于深度学习的网络CsiNet, MCMTNet可以处理任意维数的信道数据,且训练参数更少,复杂度更低。
-
单位中兴通讯股份有限公司; 西安邮电大学; 通信与信息工程学院