摘要

矩阵分解算法广泛应用于推荐系统。然而,其性能往往受到数据稀疏性和数据高维度的影响,且较少考虑项目的内容信息。针对上述问题,提出一种联合二部网络表示学习的矩阵分解推荐算法(BiNRMF)。首先,利用评分信息和项目的标签信息构建两个二部网络;然后,通过二部网络的表示学习算法得到用户和项目的低维向量表示,用以计算用户之间和项目之间的相似性;最后,改进传统矩阵分解模型,融入低维向量空间中用户的相似关系和项目的相似关系。在GoodBooks和MovieLens数据集上的实验结果表明,与经典的推荐算法相比,联合二部网络表示学习的矩阵分解推荐算法的预测精度有显著提升。

全文