摘要
为了增加融合图像的信息量,结合非下采样剪切波变换(Non-SubsampledShearletTransform,NSST)和离散小波变换(DiscreteWaveletTransform,DWT)的互补优势,提出了改进的多模态图像融合方法。采用NSST对两幅源图像进行多尺度、多方向的分解,得到相应的高频子带和低频子带;利用DWT将低频子带进一步分解为低频能量子带和低频细节子带,并利用最大值选择规则融合能量子带;采用改进连接强度的自适应脉冲耦合神经网络(ImprovedConnectionStrengthAdaptivePulse Coupled Neural Network, ICSAPCNN)分别融合细节子带和高频子带,并对能量子带和细节子带进行DWT逆变换,得到融合的低频子带;采用NSST逆变换重构出细节信息丰富的融合图像。实验证明,提出的算法在主观视觉和客观评价方面均优于其他几种算法,且能同时适用于红外与可见光源图像、医学源图像的融合。
- 单位