摘要
针对目前恶意代码分类方法使用特征集过于依赖专家经验,以及特征维度较高导致的高复杂度问题,文章提出了一种基于汇编指令词向量与卷积神经网络(Convolutional Neural Network,CNN)的恶意代码分类方法。文章首先逆向恶意代码可执行文件获取汇编代码,将其中的汇编指令看作词,函数看作句子,从而将一个恶意代码转换为一个文档,然后对每个文档使用Word2Vec算法获取汇编指令的词向量,最后依据在训练样本集中统计的Top100汇编指令序列,将每个文档转换成一个矩阵。使用CNN在训练样本集上训练分类模型,结果表明该方法的平均准确率为98.56%。
- 单位