摘要

利用连续波雷达测试弹丸径向速度时,会遇到弹丸、火炮、雷达及外界因素异常,测试的径向速度会出现缺失,导致递推出的炮口初速不准确。为此,选择建立合理的模型预测出缺失的径向速度对数据进行重构。雷达测试的径向速度属于一维数据,大口径弹丸的径向速度主要包含线性特征,小口径弹丸的径向速度既包含线性特征又包含非线性特征,都可以建立ARIMA模型、GM(1,1)灰色模型和回归模型进行预测。但是这些传统模型有时预测能力比较局限,预测精度不理想。为了充分整合所有模型的预测优势,提高预测精度,选择建立组合模型进行预测。针对大口径弹丸,建立由ARIMA、GM(1,1)和一阶线性回归方程构建的组合模型进行预测,针对小口径弹丸,建立由ARIMA、GM(1,1)和二次多项式回归方程构建的组合模型进行预测,为了保证预测精度,按照迭代的方式进行预测。实验结果表明,无论是大口径弹丸还是小口径弹丸,组合模型的预测精度始终高于单项模型,平均相对误差小于1‰,更加适合作为弹丸径向速度的预测模型。

  • 单位
    中国人民解放军63861部队