摘要
为提高煤与瓦斯突出的预测精度、实现快速预测,提出了一种基于自适应天牛须搜索算法(ABAS)和极限学习机(ELM)的瓦斯突出预测模型ABAS-ELM。采用核主成分分析法(KPCA)对煤与瓦斯突出的高维、非线性特征进行提取,将提取后的主特征作为预测模型的输入,使用ABAS对ELM的输入权重和隐层偏差进行寻优,建立ABAS-ELM瓦斯突出预测模型,实现对瓦斯突出风险的预测。实验结果表明,与ELM、粒子群优化的极限学习机(PSO-ELM)和遗传算法优化的极限学习机(GA-ELM)预测模型相比,该方法在提高模型泛化能力和预测精度方面效果显著。
- 单位