摘要
针对挖掘机器人执行机构的运动学逆解求解难、速度慢的问题,提出一种基于APSO-LM-BP神经网络的逆运动学求解方法。利用自适应粒子群(APSO)算法对BP神经网络中的连接权值以及阈值进行优化,再把BP神经网络训练过程中的梯度下降法用LM算法代替,以克服传统BP神经网络的输出误差大,陷入局部极优解的缺陷。仿真结果表明,与传统BP神经网络相比,APSO-LM-BP神经网络输出误差大大降低,训练时间更短,改善了算法的收敛精度和收敛速度,且满足挖掘机器人运动学逆解要求。该方法可以推广至任意自由度串联机器人的逆运动学求解,具有较强的实用性。
-
单位机电工程学院; 江西理工大学