摘要
为解决室内定位系统中因环境动态变化而导致定位精度下降的问题,提出一种基于XGBoost并融合弹性网的误差补偿算法。采用XGBoost定位模型对目标位置进行初步预测,当室内环境改变后,再采用弹性网算法构建误差补偿模型,修正XGBoost定位模型的定位误差,并与基于K近邻、支持向量机、随机森林、梯度提升决策树等定位算法做对比。实验结果表明:在更新15%指纹数据库样本的情况下,该算法在80%分位处的定位精度控制在0.73 m以内,明显优于其他定位算法,且较基于XGBoost的定位算法精度提高了25.5%。
-
单位西安科技大学; 通信与信息工程学院