基于SVM的家蚕中毒分类识别研究

作者:石洪康; 陈肖; 王志斌; 胡光荣; 马勇; 张剑飞*
来源:四川蚕业, 2022, 50(02): 32-35.
DOI:10.13886/j.cnki.sccy.2022.02.002

摘要

本文使用机器视觉和机器学习技术开展了家蚕中毒的自动识别研究,主要内容包括:首先选择健康和中毒家蚕图像为识别对象,构建了家蚕中毒识别图像数据集,其次对图像进行中值滤波、尺寸缩放和阈值分割等处理以增强图像特征差异,并利用RGB和HSV两种颜色模型求解图像样本的颜色矩,提取出基于灰度共生矩阵的纹理特征,使用机器学习中的经典算法支持向量机(SVM)创建出分类识别模型,在数据集上的平均识别率为93.54%。本文结果验证了使用机器视觉和机器学习技术开展家蚕中毒识别的可行性,为后续研究提供参考。

  • 单位
    四川省农业科学院

全文