针对变桨系统的齿形带断裂故障问题,首先通过分析变桨系统的工作原理,基于多维SCADA信号进行特征数据挖掘,再利用主成分分析法对数据进行预处理,并保留时序信息重构数组,最后利用高斯核支持向量机进行机器学习,实现对齿形带断裂故障的智能检测。结果表明该方法可准确诊断齿形带断裂故障,并已通过多台风电机组监测数据进行验证,准确性可达到98.8%,证明该文所用方法和模型的广泛适用性。研究结果可对未来智慧风电场的开发管理提供有利用价值的工具。