针对通过有限的不等时间间隔的健康数据预测未来健康情况难度较大,传统的非等间距灰色预测模型在应用中精度偏低的问题,本文提出一种优化的非等间距灰色马尔科夫预测模型。首先,该模型通过数据预处理和优化预测流程降低数据突变对预测结果造成的影响;其次,设计最佳权重系数来优化模型的构建;最后,采用灰色和马尔科夫修正相结合的策略对残差进行修正。经过实例和对比分析,结果表明,该优化模型具有更高的预测精度,从而可以相对准确地预测短期健康情况。