对历史日及预测日的风速特性进行比较,提取综合相似程度高的历史日作为训练样本,对不同类别分别建立预测模型。采用两级级联的混合聚类算法实现相似数据的最优选择,并构建基于改进粒子群优化的小波神经网络模型预测风电功率。通过对中国西部某风电场的算例仿真,表明该方法能够有效识别样本数据的筛选,提高风电功率预测精度。