摘要

Android恶意软件严重影响用户的使用体验,威胁用户的财产安全、个人隐私。如何快速且准确地实现Android设备上恶意软件的分类成为研究热点。本文分析Android恶意软件的静态特征,通过可视化方法获得恶意软件的特征图像,采用卷积神经网络(CNN)来学习恶意软件的泛化特征。针对卷积神经网络在特征学习中内存资源占用过大的问题,运用MobileNet-V1模型对卷积神经网络进行轻量化改造,实现Android设备上恶意软件的快速分类。通过实验,本文搭建的模型对Android设备上恶意软件分类准确率达到85.9%,分类速度达到21.95 ms/次。相较于传统方法,本文模型在保持较高分类准确率的情况下大幅提升分类速度,减少网络计算复杂度,可以实现对终端设备上恶意软件的快速且准确的分类。

  • 单位
    铁道警察学院