摘要
针对时变滤波经验模态分解(TVF-EMD)方法的不足之处,将样本熵作为适应度函数,采用灰狼优化(GWO)算法对带宽阈值和B样条阶数核心参数进行寻优,得到最优组合解,对不同的故障冲击试验振动信号进行分解。对本征模态函数(IMF)分量选取过程进行优化,采用多个加权指标对所有IMF分量进行计算,最终选取最优IMF分量,再通过包络谱分析提取出行星轮齿面剥落故障特征。在行星齿轮箱故障试验中,利用方均根法对剥落故障进行初步识别,根据GWO-TVF-EMD法分解得到各剥落故障信号最优IMF分量,使用包络谱分析明显判断出行星齿轮的故障频率。该方法能够提取3种不同程度齿面剥落故障的细节特征,理论值与实际值的相对误差为1.68%。
-
单位西安工业大学; 机电工程学院