归纳式迁移学习在跨领域情感倾向性分析中的应用

作者:孟佳娜; 赵丹丹; 于玉海; 孙世昶
来源:南京大学学报(自然科学), 2016, 52(01): 175-183.
DOI:10.13232/j.cnki.jnju.2016.01.020

摘要

在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于归纳式迁移学习的图模型,通过图模型建立源领域和目标领域数据之间的关联,使得源领域的数据通过图模型学习目标领域数据在特征和实例上的特点.同时,利用归纳式迁移学习方法使用少量的目标领域的已标注数据进行训练,从而提高了情感分类器在目标领域的分类准确率,极大地改进了跨领域情感倾向性分析的效果.在标准数据集上进行了实验,并与监督学习方法 SVM、半监督学习方向TSVM以及其它3种常用的迁移学习方法进行了对比,对比结果显示本文方法显著的高于SVM和TSVM,并在大多数数据集上优于其它3种迁移学习方法,实验结果表明该方法是有效的.