摘要

针对行星齿轮箱振动信号故障特征提取困难的问题,提出一种基于变分模态分解的行星齿轮箱故障特征提取方法。首先利用变分模态分解(VMD)算法对样本信号进行分解,得到若干本征模态函数(imf)。然后,计算各分量与样本信号之间的相关系数和欧氏距离,筛选出表征样本信号特征的有效分量,并计算其Teager能量算子,将计算结果进行重构。最后,针对多尺度模糊熵对信号局部差异不够敏感,提取重构信号的多尺度模糊熵和多尺度能量作为基本参数,进行参数融合构成新指标。将其应用于行星齿轮箱太阳轮和行星轴承故障分析,结果表明:新方法既可以区分行星齿轮箱太阳轮不同故障类型,又能有效识别行星轴承不同位置故障。另外,与现有方法对比,新方法区分效果更好。