摘要

针对闭环检测在图像特征表示方面存在信息丢失的问题,提出一种基于Vision Transformer (ViT)与卷积神经网络进行多模型融合的特征提取算法。首先,将输入图像进行特征提取,然后将高维的图像特征向量进行核主成分分析(KPCA)降维,构建成新的图像特征表示;同时,提出了一种新的范围匹配算法,通过相应的范围框架去限制并选择范围进行特征匹配。实验结果表明:所提算法相比于其他的算法,有着更高的准确率和匹配速率,达到了更好的鲁棒性与实时性的要求,证明了该算法在闭环检测上的有效性。