针对传统的视频跟踪算法对视频跟踪的精度不足以及主成分分析(PCA)的非线性拟合能力较弱的问题,将卷积神经网络与交互似然(IL)算法相结合,在深度学习的基础上对粒子滤波算法进行了优化改进。将核主成分分析(KPCA)网络应用于视频跟踪来获取目标的深层次特征表达,并采用一种新的交互似然图像跟踪器,非迭代地计算,对不同区域进行跟踪取样来减少数据之间的关联需求。在图像集上将所提算法与多种改进算法进行评估对比,结果表明所提算法具有非常好的鲁棒性及精确性。