基于梯度提升决策树算法的水深反演研究

作者:孟然; 沈蔚; 栾奎峰*; 纪茜; 饶亚丽
来源:海洋湖沼通报, 2023, 45(01): 45-50.
DOI:10.13984/j.cnki.cn37-1141.2023.01.007

摘要

传统的水深测量方法多通过舰载声纳实地探测的方法,灵活性较差且水深资料更新周期长,并且在某些海域,船只往往难以靠近从而无法完成测量。本文使用七连屿海域附近的WorldView-2多光谱遥感影像构建了基于梯度提升决策树(Gradient Boosting Decision Tree, GBDT)算法的水深反演模型,并利用单波束与人工测量相结合的水深数据,与传统的单波段模型、双波段模型以及BP神经网络水深反演模型的水深数据进行了水深反演精度对比。结果表明,在0~20 m深海域,GBDT模型反演精度高于其他模型,且更符合实际水深,其检验点的R2为0.9664, RMSE为0.94 m, MAE为0.75 m, RME为19%。