摘要

针对只有少量标签数据的弱监督条件下现有调制信号识别模型准确率较低的问题,提出基于生成对抗网络的半监督学习框架。该方法通过对通信信号进行冗余空域变换,使其在适应生成对抗网络模型的同时保留丰富的信号相邻特征;通过梯度惩罚Wasserstein生成对抗网络的引入,构建适宜电磁信号处理的半监督学习框架,实现对无标签信号样本的有效利用。为了验证所提算法的有效性,在RADIOML 2016.04C数据集上进行测试。实验结果表明,该方法在半监督条件下能训练出高效的分类器,获得优异的调制识别结果。