摘要

为解决图像分割中的边界粘连、小目标分割问题,提出一种遥感图像语义分割模型FAME-Net。在编码器中用ResNet33取代卷积网络,融合空间和通道注意力机制,提高深层次特征和小型建筑物特征提取能力;在中间增设改进的金字塔模块C-ASPP,卷积核锚点引入拉普拉斯算子,增强中心点局部特征,提高建筑物轮廓描述能力;在解码器中融合多尺度特征,设计平均损失函数,有效利用多尺度信息。采用Inria数据集进行性能测试,其结果表明,FAME-Net模型mIoU比U-Net、Link-Net、D-LinkNet、U-Net++模型分别高出8.94%、5.78%、2.47%和2.12%,小目标和边界粘连分割性能优势明显。