摘要
遗传算法搜寻全局最优解的优异特性使其在许多应用领域中获得了很好的运用,但该算法作为一种随机优化算法,对求解相对繁杂的全局优化问题易使最优解收敛至局部最优解.而标准的自适应遗传算法是在遗传算法的基础上对交叉率的值和变异率的值进行线性自适应调整,在收敛性能有所提升,但仍然不能有效避免算法的早熟.提出一种异型改进的自适应遗传算法(Heterogenic improved adaptive GA,简称HIAGA),即在对变异率和交叉率进行曲线自适应调整的同时应用精英保留策略的方法.仿真实验结果表明,HIAGA算法在处理收敛速度和避免搜寻结果成为局部最优解等方面能达到较好的处理效果.
- 单位