为解决智能驾驶应用场景下以行人与车辆为主,附带骑行电动车的多目标检测存在检测速度不满足实时性的问题,提出一种多目标实时检测方法。通过对YOLO (you look only once)v2卷积神经网络模型进行维度聚类分析以及结构调整等优化举措,行人与车辆检测AP (平均准确率)值分别为71%和81%,检测速度为50帧/s。实验结果表明,该方法与目前先进目标检测方法相比,在准确率相差5%以内的前提下大幅提高检测速度,实现了实时性检测的目标。