摘要
研究采用卫星遥感技术获取高分辨率遥感影像水体样本数据集,基于深度卷积神经网络从高分辨遥感影像中提取水体并进行黑臭水体智能监测,提出了一种改进U-Net的黑臭水体检测网络模型(IWDNet)。基于U-Net结构引入跳跃式多尺度特征融合,结合通道注意力机制、卷积注意力模块、通道与空间注意力机制生成不同多尺度特征融合注意力机制(MFFAM)模块进行对比,并引入空洞卷积扩大网络感受野,最终实现黑臭水体的识别检测。实验证明:基于跳跃式多尺度融合与CBAM注意力机制的黑臭水体检测网络(MFFCBAM-IWNet)模型有效提升了识别精度,在高分辨遥感影像水体样本数据集上表现最佳,总体精度达98.56%,Kappa系数达0.978 4。