摘要

【目的】提出一种基于随机森林与Permutation Importance、PDP和LIME结合的可解释性模型,对滑坡易发性区划进行全局和局部解释,旨为滑坡灾害精准防治与城市规划提供理论依据。【方法】以重庆市江津区为例,选取地形地貌、地质构造、气象水文、环境条件和人类活动共5个方面的21个因子,结合江津区899个历史滑坡点,建立30 m×30 m精度的栅格空间数据库,按照滑坡与非滑坡1∶1的比例选取899个非滑坡点,利用随机森林算法构建滑坡易发性模型,将结果分为极低、低、中、高、极高等5个易发性等级,探讨了随机森林模型在三峡库区滑坡易发性区划中的普适性,最后通过Permutation Importance, PDP, LIME方法研究随机森林模型的可解释性。【结果】滑坡高-极高易发区内滑坡点数占历史总滑坡点的71.3%,面积占区域总面积的20.42%,混淆矩阵准确率为0.968,全体数据集AUC值达0.962。通过模型解释可知地形起伏度、年平均降雨量、坡度是滑坡易发性区划中最重要的因子,且地形起伏度、坡度为正影响,当年平均降雨量小于1 300 mm时,对滑坡的发生也产生正影响。【结论】基于可解释性机器学习的滑坡易发性区划模型预测精度高,对滑坡的精准防治有重要的实践意义。