支持向量机模拟电路故障诊断涉及到特征提取、特征选择和支持向量机的参数优化等问题,它们都对诊断结果有直接的影响。针对这一问题,提出了一种基于改进的离散粒子群算法的同步优化方法。该算法采用非线性惯性权重和遗传操作相结合的方法,提高了粒子群前期迭代的探索能力和后期迭代的开发能力,同时降低了粒子群陷入局部最优的风险。通过模拟电路的仿真实验,验证了同步优化方法和改进的离散粒子群算法的有效性。