摘要

针对现阶段水质监测中存在的水质变化响应滞后问题,提出了采用灰色预测法、人工神经网络(BP神经网络、径向基神经网络、广义回归神经网络)以及两者组合的方法对水质动态预测进行研究。以太湖流域嘉兴斜路港监测断面为例,并依据后验差检验比值c及小概率精度p对模型预测效果进行了分析。结果表明,对年内预测,通过广义回归神经网络的动态预测值平均相对误差为0.61%,后验差检验比值小于0.65,小误差概率大于0.7;采用灰色结合广义回归神经网络的方法对水质pH值进行预测,平均相对误差仅有0.85%,后验差检验比值小于0.65,小误差概率等于1。研究结果还表明,对年际预测,灰色结合BP神经网络和灰色结合径向基函数神经网络的动态预测值平均相对误差分别为0.57%和0.80%,其后验差比值都小于0.5,小概率误差都为0.9,大于0.8。

  • 单位
    宁波工程学院

全文