摘要

识别复杂网络的重要节点是复杂网络研究的关键点,也是网络稳定性判定的重要理论基础.常用的识别节点影响力的中心性指标有介数中心性、度中心性、特征向量中心性和K-core中心性等,这些指标在识别重要节点时存在一定的局限性.为了解决以上问题,将节点vi的邻居节点集划分成关联邻居节点集(MR)和非关联邻居节点集(MUR),结合图的信息熵以及节点的介数中心性和度中心性,提出新的中心性指标,即基于邻介熵(NBE)和邻度熵(NDE)的关联邻居中心性RNC和非关联邻居中心性URNC.实验通过动态攻击来评估新的中心性指标在一个实验网络模型和五个真实网络上的效率,结果表明,新的中心性比传统的中心性具有更高的识别重要节点的效率.