摘要

高分辨率磁共振图像(MRI, magnetic resonance images)能够提高疾病诊断精度,但高分辨率MRI图像的获取十分困难。基于深度学习的图像超分辨率(SR, super resolution)技术可有效地提高图像分辨率。近年来,生成对抗网络(GANs, generative adversarial networks)为3D-MRI图像SR重建提供了新思路。相较于传统的基于深度卷积神经网络(DCNN, deep convolutional neural network)的SR算法,GANs网络以人类视觉机制为目标,且引入判别函数,使重建3D-MRI图像更接近真实图像。研究采用增强超分辨率生成对抗网络(ESRGAN, enhanced super-resolution generative adversarial networks)对3D-MRI图像进行SR重建;并利用3D-MRI图像的跨层面自相似性,将重建任务降维到2D,在保证重建效果的基础上,减少了网络训练时间和内存需求。通过与其他传统算法和基于DCNN算法对比实验表明,提出的算法能够进一步提高3D-MRI图像的视觉质量。