摘要
为了应用高光谱成像技术结合图像处理技术研究杏鲍菇含水率的快速无损检测以及含水率分布可视化,采集不同干燥时期共240个杏鲍菇样品在358~1 021 nm波段范围内的高光谱图像。利用阈值分割方法将图像中杏鲍菇区域与背景分离,提取杏鲍菇的平均光谱数据。采用连续投影算法(SPA)和稳定性竞争自适应重加权采样法(SCARS)分别筛选出5个和10个特征波长;采用主成分分析方法获得杏鲍菇的前2个主成分图像PC1、PC2,基于灰度共生矩阵(GLCM)提取主成分图像PC1、PC2共16个纹理特征。利用偏最小二乘(PLS)和最小二乘支持向量机(LS-SVM)分别建立光谱特征、纹理特征以及光谱与纹理特征融合的含水率预测模型。结果表明:与光谱特征相比,纹理特征与含水率的相关性较差;光谱特征模型SCARS-LS-SVM预测效果最好,其预测集决定系数(R■)=0.975,均方根误差(RMSEP)=3.712,相对分析误差(RPD)=3.211。基于SCARS-LS-SVM模型,将杏鲍菇样品含水率分布用不同颜色直观显示,实现了含水率分布可视化。
- 单位