摘要

为了解决遗传算法在规划AGV路径时存在陷入局部最优,收敛速度慢,且忽略多AGV和真实运行路况的影响,对算法进行改进。采用三交换启发交叉算子代替传统的两交换启发交叉算子,防止陷入局部最优并能提高收敛速度。在适应度函数中引入拥堵系数和路径平滑程度,提高适应度的判断能力,使规划的路径更加符合实际。仿真结果表明,与传统蚁群算法相比,提高跳出局部最优解的能力;与传统遗传算法和Dijkstra算法相比,所规划的路径长度下降52.2%,收敛时间减少19.4%;并能选择较少的转弯数和最少AGV数量的路径,从而减少AGV总体运行时间。