摘要
现有的基于深度强化学习(deep reinforcement learning,DRL)的端到端自动驾驶决策方法鲁棒性较低,存在安全隐患,且单纯依赖图像特征难以正确推断出复杂场景下的最优动作。对此,提出了一种联合图像与单目深度特征的强化学习端到端自动驾驶决策方案。首先,建立了基于竞争深度Q网络(dueling deep Q-network, Dueling DQN)的端到端决策模型,以提高模型的策略评估能力和鲁棒性。该模型根据观测数据获取当前状态,输出车辆驾驶动作(油门、转向和刹车)的离散控制量。然后,在二维图像特征的基础上提出了联合单目深度特征的状态感知方法,在自监督情况下有效提取场景深度特征,结合图像特征共同训练智能体网络,协同优化智能体的决策。最后,在模拟仿真环境下对不同的行驶环境和任务进行算法验证。结果表明,该模型可以实现鲁棒的端到端无人驾驶决策,且与仅依赖图像特征的方法相比,所提出的方法具有更强的状态感知能力与更准确的决策能力。
- 单位