摘要
以自适应模糊系统AFSs为基础,运用径向基高斯函数RBF所建立的AFSs-RBF神经网络模型能够同时容纳模糊系统的推理功能和自适应性,动态调节隐节点数即模糊规则数,具有广泛的适用性.将这种模型应用于轻亚黏土地震液化评价中,选择震中距、上覆有效应力、黏粒含量、标贯击数、地下水位、循环应力比等6个与地震和场地条件有关的影响因子作为网络输入参数,对于轻亚黏土场地的液化势判别具体地建立了模糊神经网络模型AFSs-RBF.以唐山7.8级地震中天津某地区的轻亚黏土液化数据为训练样本,经验证和应用表明,这种AFSs-RBF网络具备更高的自适应性和非线性映射能力.
-
单位大连理工大学; 海岸和近海工程国家重点实验室