摘要
基于深度学习的信道估计方法中,训练网络模型需要大量的数据运算,且所有用户数据都需要集中上传至服务器上,存在隐私泄漏的隐患。针对上述问题,提出了一种基于联邦学习的LTE-V2X(Long Term Evolution-Vehicle to Everything)信道估计算法,采用CNN-LSTM-DNN(Convolutional Neural Network-Long Short Term Memory-Deep Neural Network)模型对时变的信道进行估计,并将学习网络模型所需要的计算分配到车载用户中,在降低道旁基站负载的同时也保护了车载用户数据的隐私。仿真结果表明,基于联邦学习的信道估计算法在车载用户高速移动的场景下,较传统的信道估计算法平均有10 dB以上的归一化均方误差(Normalized Mean Square Error, NMSE)增益以及3 dB以上的误码率(Bit Error Rate, BER)增益,且较集中式学习算法相比,NMSE性能差距在3 dB以内;BER性能差距在1 dB以内,所提算法能够有效追踪时变的信道,且与集中式学习算法相比仅损失了极少的性能。
-
单位重庆大学; 重庆工程学院