摘要

为了提高网络入侵检测正确率,利用特征选择和检测分类器参数间的相互联系,提出一种特征和分类器联合优化的网络入侵检测算法。联合优化方法将网络状态特征和分类器参数作为遗传算法的个体,网络入侵检测正确率作为个体适应度函数,通过选择、交叉和变异等遗传操作获得最优特征和分类器参数,利用KDD 1999数据集对联合优化算法进行验证性测试。实验结果表明,相对于其他入侵检测算法,联合优化算法既解决了特征与分类器不匹配带来的入检测检测能力下降,又提高了网络入侵检测正确率和效率,为网络入侵检测提供了一种新的研究思路。