摘要
停车位预测技术是解决城市停车难问题的一种可行方案。针对神经网络等预测模型难以应对诸如路边占道停车等复杂情况,提出了一个基于支持向量机和决策树集成的模型训练方法,不再着重预测停车位的个数,而是预测某一位置的停车难度。在每轮训练过程中拟合一个支持向量机模型,同时收集预测出错的样本,最后在误分类样本集合上训练决策树模型来提高整个模型的预测准确性。采用该方法训练了一个城市空间停车难度预测模型,并利用该模型预测了近一周时间的停车难度。实验结果显示,该方法的预测效果优于单独使用支持向量机、决策树和全连接神经网络模型,可以较好地捕捉到停车难度随时间变化的基本情况。
- 单位