摘要
具有各向异性和间断扩散系数的椭圆型方程在辐射流体力学和油藏模拟等许多物理应用中发挥着重要作用.辐射扩散问题的计算通常基于流体的网格.在流体计算中,网格会随着流体的流动发生扭曲变形.间断Galerkin (discontinuous Galerkin, DG)方法是计算数学中一类重要方法,适用于间断系数和非规则网格等复杂情形.本文在对称内惩罚方法的基础上发展加权DG方法求解扭曲网格上的椭圆方程.在理论分析中,首先给出DG方法中双线性形式的强制性和连续性的证明,然后基于强制性和连续性给出能量范数的误差分析,最后采用对偶论证技巧给出L2范数下的误差估计.数值实验在随机网格、正弦曲线型网格、Shestakov型网格和Z字型扭曲网格上进行,数值结果验证了加权DG方法对具有间断和各向异性扩散系数的椭圆问题的有效性.
- 单位