摘要

探讨了经典概率神经网络(PNN)作为模式分类器时的相关原理,针对传统PNN采用相同平滑因子而导致识别率低的问题,提出了一种改进概率神经网络(IPNN),其平滑因子根据模式类别的不同而自适应变化,从而使隐含层的神经元具有更高的适应性,更好地表征了特征向量与模式状态的关联性,反映了输入特征向量对于正确分类结果的实际作用,并将该IPNN应用于滚动轴承的故障诊断中。实验结果表明:IPNN能够有效提高滚动轴承故障分类的准确性,比经典PNN和常用的误差反向传播神经网络(BPNN)具有更高的识别率。

全文