摘要

高分辨率遥感图像有丰富的空间特征,针对遥感土地覆盖方法中模型复杂,边界模糊和多尺度分割等问题,提出了一种基于边界与多尺度信息的轻量化语义分割网络.首先,使用轻量化的MobileNetV3分类器,采用深度可分离卷积来减少计算量.其次,使用自顶向下和自底向上的特征金字塔结构来进行多尺度分割.接着,设计了一个边界增强模块,为分割任务提供丰富的边界细节信息.然后,设计了一个特征融合模块,融合边界与多尺度语义特征.最后,使用交叉熵损失函数和Dice损失函数来处理样本不平衡的问题.在WHDLD数据集的平均交并比达到了59.64%,总体精度达到了87.68%.在DeepGlobe数据集的平均交并比达到了70.42%,总体精度达到了88.81%.实验结果表明,该模型能快速有效地实现遥感图像土地覆盖分类.

全文