摘要

针对无人机自组网的拓扑时变、节点移动、间歇性连接等特点,提出用时序化图嵌入模型对预处理后的无人机自组网进行表征,基于线性概率计算采样间隔以提高采样效率,将网络结构特征映射为节点间关系,并采用对抗训练提取节点上下文语义特征。利用长短期记忆网络提取无人机自组网的时序特征,预测下一时刻的网络连接情况。采用AUC、MAP、Error Rate作为评价指标。Ns-3仿真实验表明,与Node2vec、DDNE、E-LSTM-D等方法相比,所提方法具有更高的预测准确率。