摘要

提出了一种基于相对指数熵的地理信息数据分级评价模型,构建级内相对指数熵与级间指数熵指标,分别量化分级数据级别内集聚水平和级别间的离散水平,并利用这两个指标构建了地理信息数据分级的相对指数熵评价指标。在Python中实现地理信息数据分级以及分级的相对指数熵计算。试验中,应用5种常用的分级方法对5种典型分布的6个数据集以及1个人口普查数据集进行分级,并分别计算分级结果的相对指数熵指标。试验结果表明,在面向不同分布的数据集时,相对指数熵指标能够很好地指示出最优分级方法,并且反映出不同分级方法的细小差异,对于地理信息数据分级的评价是有效的。