摘要
作为电力变压器的重要部件,套管的管理与维护对于设备的安全稳定运行起着至关重要的作用。为提升电力设备巡检的智能化水平,文中提出一种基于卷积神经网络的套管故障红外图像识别方法,该方法在特征提取方面具有显著的优势,避免了人为提取描述特征的低效和易误判问题。首先,建立了包含正常、缺油与局部过热3种状态类型的套管红外图像样本库;然后,将规范化处理后的红外图像作为卷积神经网络的输入,搭建了套管故障红外图像识别模型;最后,通过对网络超参数的选取进行实验分析,确定了激活函数种类、池化方法及卷积核数目。针对文中样本库,文中所提模型对套管3种状态类型的分类结果准确率达到96%,相较于SVM算法和BP神经网络算法分别提升约14%和15%,识别性能更为优异。
-
单位华北电力大学; 新能源电力系统国家重点实验室