摘要
为保证离心泵的安全高效运行,需要对离心泵的运行工况进行识别研究.首先,使用测试函数对比研究了经验模态分解、集合经验模态分解和互补集合经验模态分解3种振动信号特征提取方法,基于性能最优的特征提取方法提取不同工况下运行的离心泵振动信号特征数据.然后,对支持向量机模型进行改进,提出了一种使用k-means聚类算法优化的二叉树支持向量机模型,并将改进模型应用到离心泵4种不同运行工况的识别中.同时,使用其他2种多分类支持向量机模型作为对比.研究结果表明:3种特种提取方法中,互补集合经验模态分解无模态混叠迹象性,噪声干扰小,性能表现更好;改进支持二叉树向量机模型分类准确率可达82.17%,对设计的4种工况具有很好的分类效果;改进支持二叉树向量机模型结构简单,训练时间短,实时性好,综合性能优于其他2种模型.
- 单位