摘要
在处理不平衡数据时,为有效剔除多数样本内的冗余信息和合成有价值的少数样本,提出一种基于高斯混合模型的采样算法(MSGMM)。将多数类和少数类样本分别聚类,最佳聚类个数通过迭代确定。在迭代时,先初步选择聚类个数并用高斯混合模型聚类。对于多数样本的每一个聚类C的剔除比例为其聚类中心到SVM生成超平面的距离权重和其数量权重的加权;对少数类样本按聚类中心到超平面的距离来划分采样比例;并用Random-SMOTE算法合成新样本,以此达到样本数量之间的平衡。实验表明该算法相较于传统算法,精度有1%~16%的提升,验证了该算法的有效性。
- 单位