摘要
目的 PH(Pythagorean hodograph)曲线由于具备有理等距曲线、弧长可精确计算等优良的几何性质,广泛应用于数控加工和路径规划等方面。曲线插值是曲线构造的主要手段之一,虽然对PH曲线的Hermite插值方法进行了广泛研究,但插值给定数据点的构造方法仍有待突破,为推广四次PH曲线的应用范围,提出了一种新的四次PH曲线的3点插值问题解决方法。方法从四次PH曲线的代数充分必要条件出发,在该曲线的Bézier控制多边形中引入辅助控制顶点,指出其中实参数的几何意义,该实参数可作为形状调节因子对构造曲线进行交互。对给定的3个平面型值点进行参数化确定相应的参数值;通过对四次PH曲线一阶导数积分得到曲线的显式表达,其中包含一个待定复常量,将给定的约束点代入曲线的显式表达式得到关于待定复常量的一元二次复方程,求解该复方程并反求Bézier控制顶点得到符合约束条件的四次PH曲线。结果实验对通过构造插值给定数据点的四次PH曲线进行比较,当形状调节因此改变时,曲线形状可进行有效交互。每次交互得到两条四次PH曲线,通过弧长、弯曲能量、绝对旋转数的计算得到最优曲线,并构造得到PH曲线的等距线。结论本文方法给定的形状调节参数具有明确的代数意义和几何意义,本文方法易于实现,可有效进行交互。
- 单位